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Figure 1: (a) The gaze referential inference task. (b) 99.9% confidence intervals of the
accuracy means are depicted. A random-guessing machine achieves an accuracy of around
42%. A performance gap exists between top-tier Vision Language Models and humans.

Abstract

Gaze-referential inference—the ability to infer what others are looking at—is a
critical component of a theory of mind that underpins natural human-AI interaction.
In a controlled study, we evaluated this skill across 111 Vision Language Models
(VLMs) using photos taken with manipulated difficulty and variability, comparing
performance with that of human participants (N = 65), and analyzed behaviors
using mixed-effects models. We found that 94 of the 111 VLMs failed to do better
than random guessing, while humans achieved near-ceiling accuracy. VLMs even
respond with each choice almost equally frequently. Are they randomly guessing?
Although most VLMs struggle, when we zoom in on five of the top-tier VLMs with
above-chance performance, we find that their performance declined with increasing
task difficulty but varied only slightly across different prompts and scene objects.
These behavioral patterns cannot be explained by considering them as random
guessers. Instead, they likely use a combination of heuristics and guessing such that
their performance is subject to the task difficulty but robust to perceptual variations.
This suggests that VLMs, lacking gaze inference capability, have yet to become
technologies that can naturally interact with humans, but the potential remains.
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1 Introduction

Theory of Mind (ToM) is our ability to attribute mental states (e.g., intention, desire, belief, and
goals) to ourselves and others (Premack and Woodruff, 1978). It underpins our capacity to understand
others, engage in natural interactions, and collaborate effectively. As recent advances in language
modeling are being rapidly integrated into every aspect of human society, their ability to interact
meaningfully with humans depends on possessing a machine form of ToM (Ma et al., 2023). While
early exploration in text-based technologies has yielded intriguing findings (e.g., Kosinski 2024),
recent advances in generative Vision-Language Models (VLMs, e.g., Gemini et al. 2023; Liu et al.
2023), which process both visual and textual inputs, offer promising hosts for a more capable ToM
with natural interactions. A key challenge today is uncovering the extent to which VLMs have a
ToM, and if not much, to determine whether they are on the right track of improving ToM as scaling
continues. However, most evaluations are not adequate in furthering understandings of the inference
behind the scores (e.g., Kosinski 2024, but see Pi et al. 2025), and VLMs’ use of superficial shortcuts
is hard to control without access to their training data, echoing Sap et al. (2022).
Interpreting gaze, a skill humans are uncannily good at, can illuminate this challenge, as it serves as
one of the basic elements that more complex ToM builds on. Gaze is a window into other people’s
unconscious knowledge: their visual focus (Posner and Petersen, 1990), conversational referents
(Prasov and Chai, 2008; Qian et al., 2023), linguistic knowledge (Golinkoff et al., 1987), intention to
speak during conversation turn takings (Kendrick et al., 2023), intended motor actions (Land, 2006),
and immediate intentions and desire in general (Mikulincer et al., 2014). Gaze is also one of the
starting points where infants begin to generalize their experience (with open and closed eyes) to other
social agents, which allows them to begin understanding others who are “like them” (Mikulincer et al.,
2014). All of these are critical ingredients of ToM. More broadly, gaze inference likely bootstraps
our later social learning, cognitive development (Csibra and Gergely, 2009), and possibly language
acquisition (Brooks and Meltzoff 2005, but also see Sander et al. 2024), all of which furthers our grasp
of ToM. Considering that gaze inference constitutes the content and helps the development of a ToM,
the pressing question is whether VLMs can pick up gaze cues like humans do. If they cannot, they are
equipped with a weaker ToM that will leave them a harder time understanding humans and interacting
and collaborating with humans. Investigating this will help build a more nuanced understanding of
machine ToM in VLMs.
Instead of building a general benchmark of gaze understanding, we aim to characterize VLMs’
behavioral patterns through a controlled study to constrain hypotheses of their underlying inference.
We formulate the basic task as inferring the object that falls along gaze direction (“line of sight,” as
shown in Fig. 1), one that more sophisticated gaze understanding builds on. We controlled variables
that might affect the task difficulty and potential sources of variability in performance. We took 900
photos of a scene with an actor (as the gazer) by a table and objects on the table, covering multiple
photo-shooting views, gazers, proximities between objects, and the combinations of objects with
different visual contrast in the scene. See Fig. 2 for examples of the pictures. Then, we asked VLMs
and humans (N=65) to choose which object the person in the photo is looking at from a set of options
and inferred behavioral patterns from their performance.
Out of 111 VLMs, 94 performed about as well as if they had guessed randomly without looking at
the images. Even worse, they responded with every possible option almost equally often, which is
consistent with the account that they chose randomly from the given options. On the other hand,
human participants showed near-ceiling accuracy, as depicted in Fig. 1. Still, as we took a closer
look at five chosen top-level VLMs, we found patterns that nevertheless cannot be explained by
labeling them as mere “random guessers” or “approximate retrievers” (Kambhampati, 2024), which
will predict either a chance-level performance, or their performance only varies with the superficial
familiarity of the context relative to their “database.” Instead, they performed well above chance (all
p < .002), and their performance declined with increasing task difficulty but varied only slightly with
the specific prompt phrasing and the specific objects present in the scene. These findings suggest that
the underlying inference of the top-tier models is imperfect but approaches the gaze inference task in a
way that is affected by the difficulty (rather than familiarity), and the inference is robust to perceptual
variations, such as object visual features, sizes, and background distractors. We hypothesized that
VLMs may rely solely on head direction without eye direction to perform this task—an observation
that opens avenues for further investigation.
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2 Related Work

Gaze Estimation and Following It is helpful to distinguish gaze direction estimation and gaze
following. Estimation involves inferring the direction of gaze, while gaze following is the phenomenon
that infants look where someone else is looking (Mikulincer et al., 2014). This work is concerned
with gaze estimation, as gaze following builds on estimation and additionally requires registering
gaze as communicative (introducing a third party; Grossmann et al. 2008; Senju and Csibra 2008)
and referential (object-directed). 2- to 5-day-old newborns can detect gaze direction (or motion
direction) in the sense of anticipating object appearance on the left or right side of a face cued by eye
movements (Farroni et al., 2004). On the other hand, gaze understanding (the true subject of interest
behind gaze following) is not mature at birth: infants only begin to understand that eye gaze reflects
visual experience around ten months old (Brooks and Meltzoff, 2005) and know head turns and eye
movements are object-directed after fourteen months old (Caron et al., 2002). Therefore, if VLMs
can estimate gaze direction, a further question will be what roles do VLMs attach to gaze (e.g., the
referential nature of gaze, using gaze to resolve conversational referent ambiguity).

Gaze Estimation in Computer Vision and VLMs There is evidence that explicitly teaching VLMs
to infer gaze referents can lead to more effective natural language and motor interactions between
robots and humans (e.g., Qian et al. 2023; Prasov and Chai 2008), suggesting the importance of gaze
estimation for human-centered technologies. Computer vision methods specialized for gaze estimation
might achieve performance comparable to humans’ (Han et al., 2021). However, this result is based on
an evaluation that mainly requires head direction inference but less about eye direction, which turns
out to be an important factor, as revealed in our Analysis B in Section 5. Furthermore, these methods
require specialized designs for gaze, but it is unclear how they can be seamlessly integrated into the
general-purpose VLMs that are more widely applied. Bridging the gap from specialized methods
to VLMs, Gupta et al. (2024) evaluated VLMs on gaze estimation benchmarks. In this work, we
conducted a controlled study to build on benchmark scores and characterize the underlying inference.

3 Experiment Settings

3.1 Task Formulation

As depicted in Fig. 1, we study gaze direction inference in a minimal setting. An image depicts a
single gazer and a set of objects on the table in front of the gazer, which are the main focus of the
image. We present the images with multiple-choice questions where the question is about which
object the gazer looks at, and the choices are names of objects on the table in a randomized order. We
essentially use referent inference as a proxy for direction inference. Such a simple setting allows us to
reduce confounders (e.g., VLMs’ attentional skills for cropping, object naming skills for open-ended
categorization, and meta-cognitive skills for reporting direction numerically).

3.2 Stimuli Curation

View = Front View = LeftView = Right

Proximity = 1

Proximity = 2

Proximity = 3

#Objects = 2

#Objects = 3

#Objects = 4

(a) (b) (c)

Figure 2: Systematic manipulation of View (left/right/front), Proximity (1-3 scale), #Objects
(2-4), Objects (18 combinations of 9 distinct items), and Gazer (2 actors) across 900 test stimuli.
Stimuli in subfigure (c) have a Proximity value of 2. Here Gazer=ActorX.
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As illustrated in Fig. 2, when constructing the scenes for photo taking, we systematically controlled
the following variables, which allow us to go beyond the benchmark scores we obtained in Section 4
and characterize behavioral patterns of VLMs and humans in Section 5:

• Objects: The specific combination of objects on the table, among 18 combinations of 9 distinct
objects. See Appendix A.1 for all 9 objects and the 18 combinations of them.

• #Objects: The number of Objects on the table, from 2 to 4.
• Gazer: Either Actor X or Actor Y. The actor in Fig. 2 is X, and the one in Appendix A.1 is Y.
• View: 3 possible values. Two views show the gazer’s left and right profile (View=left/right),

and one shows a frontal view directly facing the gazer (View=front).
• Proximity: On a scale from 1 to 3, where 3 represents the highest relative proximity (i.e., smallest

distance) between Objects (between each other, not to the gazer).

After stimulus cleansing (see Appendix A.1 for details), there are 900 test stimuli for both VLMs and
humans, and additionally, 7 attention-check stimuli for the human study. 1

3.3 VLM Evaluation Procedure

We follow the reasoning-model-friendly pipeline developed by Duan et al. (2024). We present each
VLM with every stimulus once for Analysis A (in Section 4) and additionally ten times for Analysis B
(in Section 5), meaning 900 and 9000 trials for each VLM, respectively. In each presentation of stimuli,
we construct the prompt based on a uniformly sampled template with replacement from a pool of 12
templates (See Appendix A.2 for a complete list). The response decoding temperature parameters are
set to the ones recommended by the corresponding VLM provider. Then, VLM responses are first
matched to options (A, B, C, or D) using manually defined templates, followed by summarization
and matching using Meta-Llama-3.1-70B-Instruct if template matching fails, and then followed by
manual review if still not resolvable. Infrequently (5741 such trials among 900 × 111 in Analysis A
plus 9000 × 5 trials in Analysis B), responses that are indeed not manually categorizable are counted
as incorrect responses, since they are often nonsensical responses when the problem is too difficult
for the VLMs.

3.4 Human Response Collection

We used Prolific to recruit 79 participants around the globe who are fluent in English and use Desktop
browsers to access our survey (created using JsPsych; developed by de Leeuw et al. 2023). The test
stimuli are split into 20 predetermined stimulus lists with 45 test stimuli per list. There are additionally
7 attention-check stimuli with #Objects=2 and Proximity=1 while covering a range of Objects,
all three Views, and both Gazers. Each participant was assigned to one of the stimulus lists and
received a mix of 45 test stimuli and 7 attention checks with random presentation order. 13 participants
failed at least one attention check and were excluded. After that, one participant was also excluded
due to their performance being far from the mean accuracy for more than three standard deviations,
resulting in 65 valid participants for analysis (65 × 45 valid trials). More details are in Appendix A.3.

4 Analysis A: Can VLMs Infer Human Gaze Referent?

In this section, we aim to uncover the simplest question: to what extent can VLMs infer the referent
of human gaze? Based on 900 trials per VLM from 111 VLMs and 45 trials per person from 65
participants, we saw a substantial performance gap between VLMs and humans and speculated that
VLMs just randomly guessed the answers, but it turned out to be more complicated than that.

Performance Gap Fig. 1 depicts a comparison between human and top-tier VLM performance.
The performance of all 111 VLMs is available at Appendix A.4. On one hand, human participants
can successfully infer the gaze referent in ninety-one percent of the questions. On the other hand, the
accuracies of most VLMs are very close to the expected accuracy of a machine that randomly selects
a valid option in the multiple-choice question (E(Accuracy) ≈ 42%). The five VLMs shown in Fig. 1
are top-level VLMs, and they did perform well above chance-level (all p < .002). Still, they can only
solve about half of the questions, suggesting a substantial gap from human-level performance.

1The stimulus set is available for download at https://osf.io/kyaeu.
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VLMs Might be Randomly Guessing. We performed a 2-sided test for proportions based on
normal (i.e, a z-test) and found that 94 of the 111 VLMs fail to perform significantly better than
chance (α = .05). Fig. 3 shows a subset of confusion matrices comparing humans and VLMs across
different combinations of Objects (more in Appendix A.5). A random guesser will produce a
uniform confusion matrix, while the ones of VLMs are not substantially different than that. They did
not achieve that by always outputting option A (See Appendix A.7).
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Figure 3: A row in a confusion matrix indicates the proportion of trials across all 111 VLMs (or
human participants) that were responded with the column object (e.g., the coffee for columns with a
coffee emoji) among trials in which the correct answer is the row object (e.g., the doll for rows with a
doll emoji). Overall, humans occasionally choose the object adjacent to the correct one, which the
gazer looks at, while VLMs show a combination of a slight tendency towards certain items (e.g., the
doll) and near-uniform sampling across other options (alternatively speaking, probability-matching to
their priors).

Scaling Does Not Help. We collected VLM release date information for 75 of the 111 VLMs
(excluding smaller-size versions when the full-size versions are present) and size estimates for 106
VLMs (excluding outliers with estimated size larger than 100 billion parameters). They cannot
linearly predict accuracy (R2 < 0.03, 0.01 respectively), as shown in Fig. 4 and Fig. 5a, respectively,
suggesting fundamental architectural limitations rather than scale issues.

OpenAI O1GPT-4o

Gemini 1.5 ProInternLm-Xcomposer2-7b

Video_Chatgpt-7B

Figure 4: No strong linear relation between VLM accuracy and release date was found.
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Substantially Different Error Patterns between VlMs and Humans. To go beyond accuracy
scores, we evaluate agreement between humans and VLMs by comparing the mean accuracy of VLMs
and humans for every stimulus in Appendix A.6.
Additionally, we also calculated a metric termed error consistency (analogous to Cohen’s kappa κ),
proposed by Geirhos et al. (2020) to evaluate the trial-by-trial agreement of error patterns between
two decision-makers (i.e., how often they get the same thing right or get the same thing wrong). This
metric adjusts for the potentially different accuracies of the two decision-makers, such that a value of
0 indicates the expected agreement solely by chance, and 1 indicates the maximal agreement.
We first established two baselines: To evaluate intra-human error consistency, for a stimulus list
to which n participants were assigned (n ranging from 2 to 5), we enumerated all

(
n
2

)
pairs of

participants, calculated the error consistency for each pair, then average across first the pairs and then
the 20 stimulus lists. Intra-VLM consistency is the average of consistency across all pairs of 111
VLMs, a simple calculation given that every VLM sees each stimulus exactly once.
To evaluate how well a VLM’s error patterns align with all human participants, we compared the
VLM with all participants one by one and calculated the metric on the 45 test stimuli that they both
saw. We then investigate how such one-VLM-against-humans error consistencies linearly relate to
the VLM’s accuracy (shown in Fig. 5b; To remove outliers, 10 VLMs that are far from the mean
accuracy by 1.96 standard deviations are not used for the linear regression) and size. The consistency
does not become higher as VLMs get bigger (R2 < 0.1) but does as VLMs achieve higher accuracy
(R2 = 0.23, p < 10−6). Overall, there is a clear disalignment between VLMs and humans in terms of
when they make errors, indicating that their computations likely approach the problem in qualitatively
different ways.
This result contrasts with a previous finding by (Han et al., 2021) on a comparison between humans
and convolutional networks specialized for gaze inference, where high alignment was found (not
exactly error consistency though). Two explanations are available. One is that gaze-specialized
methods align with human gaze inference better than VLMs do. Another explanation, which we
preferred, is that the two reports measure different things. The previous reported alignment on their
“in-the-wild” stimulus set requires very little inference of eye direction, but mainly head direction. The
current stimulus set, on the other hand, requires eye direction inference (evident given the presence of
View effect found in human responses in Analysis B). Indeed, as revealed in Analysis B, VLMs likely
rely mainly on head direction but not eye direction, which can also explain this difference.
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makers.

Figure 5: The 95% confidence intervals for linear regression are drawn as shaded areas. Standard
deviations are reported for variables drawn as horizontal lines.
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5 Analysis B: Behavioral Patterns in Five Top-tier VLMs and Humans

In this section, we aim to uncover the kind of gaze referent understanding that top-tier VLMs have by
testing the following four hypotheses in VLMs and humans:

• View effect: The accuracy is closer to the chance level in images taken from a side view of the gazer
than from a front view.

• Proximity effect: As referent candidates get closer, the accuracy becomes closer to the chance level.
• Choice effect: As #Objects increases (from 2 to 4, which means chance level drops from 50% to

25%), the accuracy becomes closer to the chance level.
• Sensitivity: VLMs are not robust in the sense that we will observe performance further from the

chance level for a particular viewing angle (left vs. right), some specific Object combinations over
others, or some specific prompt templates.

The measure of how close the accuracy is to the chance level is the ratio between their odds (i.e.,
the additive difference between their log-odds). This definition naturally fits in the use of logistic
regression. As these are testable hypotheses, we pre-registered our study. 2

Difference from Analysis A Analysis B features a focused group of top-tier VLMs, a larger
sample size, slightly adjusted prompt templates, and mixed-effects modeling. Given that most VLMs
perform close to chance, it is only meaningful to analyze the most performant ones closely. The five
selected VLMs are: GPT-4o-2024-08-06 (OpenAI, 2024), Gemini 1.5 Pro 002 (Gemini et al., 2024),
Qwen2.5-VL-72B-Instruct (Qwen et al., 2025), InternLM-XComposer2-vl-7b Dong et al. (2024), and
GLM-4V-9B (GLM et al., 2024). They are five of the top seven most-performant VLMs in Analysis
A, while InternLM-XComposer2d5-7b and OpenAI-o1 were not selected for redundancy and cost
considerations, respectively. For a comparison of prompt templates used for Analysis A and B, see
Appendix A.2. Instead of repeating each stimulus once for each VLM as in Analysis A, we repeat
each ten times. This leads to 900 × 10 trials per VLM from 5 selected VLMs (Analysis A VLM
responses were excluded from Analysis B) and 45 trials per person from 65 participants. As sanity
checks, we visualized all VLM and human data points we get in Appendix A.8 and Appendix A.9,
respectively, as well as the human performance by condition for every participant in Appendix A.10.
These initial explorations are consistent with our hypotheses.

Additional Variables In addition to the stimulus variables in Subsection 3.2, there are also:

• Accuracy (Binary): The outcome variable. Either a correct or incorrect inference of the gaze
referent.

• StimulusID (Categorical): The index of the test stimulus. 900 unique numbers in total.
• PromptID (Categorical; VLM-only): The identifier of the prompt template, from 0 to 11. See

Appendix A.2 for a list of templates.
• ParticipantID (Categorical; Human-only): The identifier of the human participant.

Mixed-Effects Modeling As Robitzsch (2020) suggested, we treated Proximity and #Objects as
continuous variables due to the underlying scale they represent and mean-centered them before fitting
the models. The following model skeleton is used:

logit([Accuracy]) ∼ logit(
1

#Objects
)

+View + Proximitycentered +#Objectscentered
+Actor + (1|Random effects)

2The experiment design, sample size, and analysis plan were pre-registered at Open Science Framework:
https://osf.io/xdmr9 after the collection of VLM responses in Analysis A but before the collection of VLM
responses in Analysis B and all human responses. Therefore, VLM responses collected for Analysis A are not
used in this section for Analysis B. The number of human participants is 65 rather than the 80 indicated in the
pre-registration, because large effect sizes were observed already. Although we pre-registered that four VLMs
would be used, any four of the five VLMs will produce the same results. Due to these small deviations, we
conducted post-hoc power tests and discussed the implications.
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where [·] is the Iverson bracket and the log-odds function logit := p 7→ ln(p/1− p) is the inverse
of the logistic function σ(x) = 1/

[
1 + exp(−x)

]
. The second logit term effectively offsets the first

term such that the fixed and random effects need to account for the variance of the log-odds of the
ratio between the actual accuracy and the baseline expected accuracy. This skeleton is used because
more complex models cannot converge. See Appendix A.12 for details of modeling.

Model Selection Possible random effects are: Gazer:Objects (nested under the gazer be-
cause a combination of objects corresponds to one of the gazer), StimulusID, PromptID, and
ParticipantID. They are potential random effects because they are meant to be samples from a
larger population (e.g., the 9 distinct objects are just samples of all possible objects). We explored the
random effect structures individually for each VLM and all humans. For Gemini and Qwen, the even-
tual random effects are StimulusID and PromptID. For GLM, GPT, and InternLM, the random effect
is StimulusID. For humans, the random effects are StimulusID and ParticipantID. Statistical
models with other random effect structures either cannot converge, or do not yield a significantly better
fit to the data under the parsimony principle according to ANOVA tests (α = .05). A reproducible
model selection procedure can be found at https://github.com/grow-ai-like-a-child/referential-gaze.

Main Effects We found strong Proximity effect and Choice effect in both VLMs and humans.
Surprisingly, no View effect is observed in VLMs while the effect is strong in humans. Table 1
and Fig. 6 depict an intuitive summary of effects found, while the full statistical model output and
trends in the log-odds space (where effects are detected) are in Appendix A.12. Had we not included
StimulusID as a random effect to account for correlations between trials using the same stimulus
and simply run a logistic regression, we would have found all effects significant. This highlights the
importance of using mixed-effects modeling in repeated-measure experiments.

Table 1: Significance codes: “***” means p < 0.001, “**” means p < 0.01, and “*” means p < 0.05.
“F”, “L”, and “R” short for View=front, left, and right, respectively. For insignificant effects,
“true null” indicates that the effect is likely not true, while the “failed to find” ones are inconclusive due
to insufficient sample size. Still, all the significant effects cannot be explained by a random-guessing
account of VLMs’ gaze referent inference.

Effects GPT Gemini GLM InternLM Qwen Humans
Proximity effect *** *** ** * True null ***
Choice effect *** *** *** *** *** ***

View effect (L. vs. F.) Failed to find ***
View effect (R. vs. F.) True null Failed to find ***
Sensitivity to Objects None
Sensitivity to Prompt None Slight None None Slight N/A

Post-Hoc Power Test of the Sample We conducted Two One-Sided T-tests (TOST) to distinguish
insignificant effects that are truly null effects and those that we failed to find due to the insufficient
sample size. This is driven by some subtle deviations from the pre-registered plan. We used the
eventual model of each group to calculate the Intraclass Correlation Coefficients (ICC) of StimulusID
(the major source of random variance), which allowed us to approximate the effective sample size and
Smallest Effect Size of Interest (SESOI). The results are reflected in Table 1, indicating that, except
for the View effect, we have enough statistical power to conclude for other effects. Future works that
investigate VLMs’ use of eye direction cues, as hinted by our explanation of the lack of View effect in
the discussion section, should use a larger sample size. The reproducible procedure is available along
with the model selection code.

Sensitivity Analysis Including random effects allows us to capture the variability across random
effects and reveals the sensitivity of VLMs’ performance to random effects. The lack of the need to
account for random variability across PromptID for GPT, for example, indicates GPT’s performance
is not sensitive to the prompt. For Gemini and Qwen, although taking the variability across PromptID
into account leads to a better fit to the data, the variance of PromptID is less than 0.1 and therefore,
they are practically not sensitive to the prompt as well. Similarly, they are not sensitive to the scene
Objects, and the performance difference between View=left and right is not significant.
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Figure 6: The estimated marginal means. The random-guessing baseline is indicated by dashed lines.
Since different models fitted for different groups vary in their random effect structures, each model
contributes to curves of the same color, and all 6 fitted models are used.

6 Discussion

We found that 94 out of 111 VLMs failed to perform better than chance at identifying the object a
person is looking at in an image, even when the options are named. In addition to the overall accuracy
being close to chance level, they responded with every possible answer almost evenly frequently.
Without controlled variables, we would have concluded that they are random guessers, not capable
of gaze referent inference. Instead, we focused our analysis on five VLMs that far outperformed
chance level and found interesting patterns: Contrary to expectations of brittle behavior (e.g., the
last page in Gupta et al. 2024), top-tier VLMs’ performance varied only slightly across irrelevant
elements like the specific scene objects and prompts. This suggests that their gaze referent inference
is shifting toward one that is robust to perceptual variations, such as object visual features. More
interestingly, as task difficulty increases, their accuracy moves closer to the random-guessing level,
which means their computation is about the image and the task. These findings cannot be explained
by reducing them to random-guessers (with performance as well as who respond without looking at
the image), or approximate retrievers (Kambhampati, 2024) (with performance depend on similarity
to training data), both of which will predict almost constant performance as task difficulty changes,
particularly given our stimuli that have controlled for superficial similarity to training data, in the
sense that they only meaningfully differ if the observer is capable of gaze referential inference, and
one that is incapable will perceive almost uniform similarity.
What will be the best explanation of these behavioral patterns? A good explanation needs to explain
both (1) the positive finding of Proximity effect and Choice effect, and (2) the lack of View effect in
VLMs that is strong for humans. The most probable one to us is that they use head direction without
using eye direction jointly. This heuristic works better when the difficulty is low, but severely breaks
down as the number of objects increases or when objects become closer to each other (but not much
when the view is from the side rather than the front), leading to a performance that is closer to the
chance level. Since humans use eye direction for inference, as the view changes from the front to the
side, the angle becomes harder to approximate, making it more challenging to track the line of sight,
and thus, the performance is impacted. VLMs do not use this cue in the first place and therefore, do
not show View effect. This also explains why previous research found strong performance correlation
between humans and early deep learning methods (Han et al., 2021) while we do not (between humans
and VLMs). Our stimuli require heavy use of eye details for inferring gaze direction, while head
directions are sufficient to solve most problems in many naturalistic evaluations of gaze inference.
Still, these speculations are only our best explanation so far, calling for further investigations.
In summary, this work uses gaze as a proxy to demonstrate how controlled studies can help us
investigate behavioral patterns behind benchmark scores (that would have marked them as random
guessers) and reductionism (“approximate retrievers”), constrain hypotheses (they are unlikely to be
just guessing), and provide new hypothesis (that they might primarily use head directions but not eye
directions) that is subject to further mechanistic investigations.
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Limitations This study, like most controlled studies, suffers from the limited quality, amount, and
diversity of the evaluation cases. The photos are of size 448 by 448, a resolution that is noticeably
lower than what the human vision system provides. This collection of photos does not and is not
meant to comprehensively resemble the rich visual experience that people will perceive in their daily
life: All photos are taken in the same office space; only two actors serve as the gazer; only 9 objects
in total (See Appendix A.1). Still, the stimulus pool includes a range of gaze-irrelevant elements that
increase the realisticness, including backgrounds with irrelevant objects, referent candidate objects
with different visual salience, and facial decorations (for example, Actor X wore head decorations,
and Actor Y wore false eyelashes and colored contact lenses).

Future Works This work raises more questions than it answers. If top-tier VLMs approximate a
gaze referent inference heuristic (e.g., one that uses head direction but not gaze direction, given the
absence of View effect), what is the mechanism of the approximation, and how does it emerge from
the data? Given that gaze understanding likely bootstraps human cognitive development and language
acquisition, in order to have AI that learns like humans and acquires Theory of Mind from naturalistic
data, will a curriculum that encourages early development of gaze-referential understanding be helpful?
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A Appendix / supplemental material

A.1 Stimulus Cleansing Procedure, Examples, and Distribution

Fig. 7 shows more examples of actor Y. Fig. 8 illustrates all 9 objects in the stimulus pool. See
Fig. 9 for a list of the 18 combinations of these objects and the distribution of stimuli. The stimulus
distribution is not perfectly uniform due to the stimulus cleansing for quality control. Note that within
every variable assignment, the number of stimuli with each ground truth is also roughly the same (i.e.,
correct answer counterbalanced).

Proximity rubrics For Proximity, a value of one corresponds to putting objects farthest away
between each other on the table, while a value of three means they are placed the closest possible, but
not touching. It represents the relative sparseness objects can be, rather than absolute distance.

Stimulus Cleansing Procedure We manually examined every photo we took and dropped all photos
taken in the middle of a blink. All cases with occluded eyes can be approached by considering the
head position, and there is no significant occlusion of parts of the objects. Black padding is added
when resizing photos to 448 by 448 pixels.

Generalizability Note that sometimes the background is messy: this increases the credibility
of our evaluation. Messy backgrounds mainly appear when View=right, yet we do not observe
significantly worse performance in the View=right condition, so such a background introduces
minimal confounding effect while adds realistic noise to the stimuli and increases diversity. We thus
expect our results to have reasonable generalizability.

View = Front View = LeftView = Right

Proximity = 1

Proximity = 2

Proximity = 3

#Objects = 2

#Objects = 3

#Objects = 4

(a) (b) (c)

Figure 7: Examples of stimuli for Actor Y with different View, Proximity and #Objects.

Figure 8: All 9 objects in the stimulus pool with different sizes and visual salience.
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Figure 9: Number of stimuli nested within View, Proximity, and Objects. The brackets in row
names denote whether the gazer is Actor X or Y for the combination of Objects.
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A.2 VLM Prompt Variants

See Table. 2 and 3 for the list of prompt templates we used for Analysis A and B, respectively. The
image tokens were inserted into the place marked by the placeholder in the template. \n indicates a
change of line. The determined attitude and the guessing proposal in these templates are necessary to
lower the refusal rate. Due to the unexpected close-to-chance performance we observed in Analysis
A, we removed the wording of guessing in some prompts for Analysis B.

Table 2: The full list of 12 prompt templates in Analysis A, assuming that #Objects=3.

ID Prompt Template
1 <image-placeholder> What is this person looking at?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A,

B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot refuse to choose.
2 <image-placeholder> Where is this person looking?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A,

B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot refuse to choose.
3 <image-placeholder> Which object is this person looking at?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s

letter A, B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot refuse to
choose.

4 <image-placeholder> What is she looking at?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A, B, C
directly. If you don’t know, you still must choose one, so you might select randomly. You cannot refuse to choose.

5 <image-placeholder> Where is she looking?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A, B, C
directly. If you don’t know, you still must choose one, so you might select randomly. You cannot refuse to choose.

6 <image-placeholder> Which object is she looking at?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A,
B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot refuse to choose.

7 <image-placeholder> What is this person looking at in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the
option’s letter A, B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot
refuse to choose.

8 <image-placeholder> Where is this person looking in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the
option’s letter A, B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot
refuse to choose.

9 <image-placeholder> Which object is this person looking at in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with
the option’s letter A, B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot
refuse to choose.

10 <image-placeholder> What is she looking at in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s
letter A, B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot refuse to
choose.

11 <image-placeholder> Where is she looking in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter
A, B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot refuse to choose.

12 <image-placeholder> Which object is she looking at in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the
option’s letter A, B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot
refuse to choose.

Table 3: The full list of 12 prompt templates in Analysis B, assuming that #Objects=3.

ID Prompt Template
1 <image-placeholder> What is this person looking at?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A,

B, C directly. If you don’t know, you still must choose one, so make your best guess.
2 <image-placeholder> Where is this person looking?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A,

B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot refuse to choose.
3 <image-placeholder> Which object is this person looking at?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s

letter A, B, C directly. You cannot refuse to choose.
4 <image-placeholder> What is she looking at?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A, B, C

directly. There is no need to reason. If you don’t know, you still must choose one, so make your best guess.
5 <image-placeholder> Where is she looking?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A, B, C

directly. There is no need to reason. If you don’t know, you still must choose one, so you might select randomly. You cannot
refuse to choose.

6 <image-placeholder> Which object is she looking at?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter A,
B, C directly. There is no need to reason. You cannot refuse to choose.

7 <image-placeholder> What is this person looking at in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the
option’s letter A, B, C directly. If you don’t know, you still must choose one, so make your best guess.

8 <image-placeholder> Where is this person looking in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the
option’s letter A, B, C directly. If you don’t know, you still must choose one, so you might select randomly. You cannot
refuse to choose.

9 <image-placeholder> Which object is this person looking at in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with
the option’s letter A, B, C directly. You cannot refuse to choose.

10 <image-placeholder> What is she looking at in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s
letter A, B, C directly. There is no need to reason. If you don’t know, you still must choose one, so make your best guess.

11 <image-placeholder> Where is she looking in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the option’s letter
A, B, C directly. There is no need to reason. If you don’t know, you still must choose one, so you might select randomly. You
cannot refuse to choose.

12 <image-placeholder> Which object is she looking at in the image?\n A. xxx\n B. xxx\n C. xxx\n Please answer with the
option’s letter A, B, C directly. There is no need to reason. You cannot refuse to choose.
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A.3 Human Response Collection Details

Attention Checks The attention checks are the same across participants and are meant to be the
simplest cases that a focused person should not fail. Indeed, within participants who are correct on all
attention checks, the non-attention-check questions with #Objects=2 and Proximity=1 (meaning
that they are as difficult as the attention checks) have a mean accuracy of around 99.30%.

Human Participant Demographics See Fig. 10 for the demographics of the 65 valid participants
(those who passed all attention checks). Demographic data of some participants is missing and hence
not plotted. All participants are paid an hourly rate of 12 USD regardless of their residence.
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Figure 10: The demographics.
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Human Accuracy vs. Response Time See Fig. 11. We submitted the response time details for
every trials of valid participants (who pass all attention checks). The higher the response time of the
trial is, the lower the likelihood of getting the correct response (p < .001). This indicates that people
tend to spend more time on harder cases and still tend to fail on them.
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Figure 11: The prediction made by a logistic regression model (response time shown here as the 99th
percentile range).

Details of the Survey See Fig. 12 for screenshots of the survey. The participants click a button to
enter full-screen mode and start reading instructions (they have to press different keys on the keyboard
to ensure they read the instructions). Then, they go through three practice trials based on 3 of the
seven attention checks with correctness feedback (in the form of a check mark or a cross mark with no
sound). After that, they complete the 45 (test stimuli) + 7 (attention check) questions with a progress
bar to motivate them, as the questions are relatively easy, but no correctness feedback is available.
The stimuli in the three practice trials will appear again as attentional checks that look the same as the
other trials. Four other pre-determined attention checks will also appear. Participants do not know
which are attention checks, and they are warned to try their best for all questions. Even if they failed
attention checks, they were still paid, regardless of the warning. Participants cannot go back and forth
to make changes, but they can take as long as they want to answer the questions.
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(a) The first instruction page after being put into fullscreen mode.

(b) The second instruction page explains the existence of attention checks.

(c) An example of the question pages where participants click one of the buttons to make their choice and proceed
to the next question.

Figure 12: Screenshots from the human survey.
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A.4 Full Comparison of the Overall Accuracy

See Fig. 13. Note that responses collected in Analysis B (in Section 5) for the 5 selected VLMs are
excluded to preserve equal sample sizes among VLMs for fair comparison.
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Figure 13: Full comparison of the overall accuracy of Humans and VLMs. 95% CIs are drawn
horizontally, while the random guessing baseline of 42% is drawn vertically.
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A.5 Confusion Matrices of VLMs and Humans

See Fig. 14 for the confusion matrices for each of the 18 combinations of Objects, across all 111
VLMs and 65 valid human participants. For each combination, the order of objects matches the
order they appear on the table, such that nearby objects in the combination visualization are nearby
in the stimuli (we did not counterbalance the order when constructing the scenes). Indeed, human
results show that cells near the diagonal have a higher frequency than cells that are further away. For
example, the remote and the doll are nearby in stimuli with a remote, a doll, a coffee, and a bottle of
water, likely causing the second cell in the first row to achieve a high frequency in the bottom-right
confusion matrix for humans. VLMs also show similar effects: as the correct answer moves from the
first row object (e.g., the doll for the bottom-left matrix) to the last row object (e.g., the soccer), the
proportion of trials that were responded with the first row object decreases, and the proportion of
trials that were responded with the last row object increases.
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(a) Confusion matrices for VLMs.

100%

0%

50%

25%

75%

(b) Confusion matrices for humans.

Figure 14: Confusion matrices. Each row corresponds to the ground truth object, and each column
corresponds to the selection made by the VLM or human participant.
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A.6 Per-stimulus Accuracy between Human and VLM

Fig. 15 shows per-stimulus accuracy (n = 900, each reflecting the mean accuracy of VLMs and humans
on a particular stimulus) for VLMs versus human participants. From the plot, it is evident that a
number of stimuli are trivial for human participants but remain challenging for VLMs. The Pearson
correlation and RMSE between human and VLM accuracies indicate only modest correspondence
but substantial overall differences in accuracy distributions between VLMs and humans. This result
is consistent with the error consistency analysis in Analysis A.
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(a) Per-stimulus accuracy comparison between all
VLMs and human participants. 851 datapoints lie above
the diagonal, 48 fall below the diagonal, and 1 datapoint
falls exactly on the diagonal.
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(b) Per-stimulus accuracy comparison between 5 top-
tier VLMs and human participants. 771 datapoints lie
above the diagonal, 56 fall below the diagonal, and 73
datapoint falls exactly on the diagonal.
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(c) Distribution of Per-stimulus accuracy comparison
between all VLMs and human participants.
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(d) Distribution of Per-stimulus accuracy comparison
between 5 top-tier VLMs and human participants.

Figure 15: Per-stimulus accuracy and distribution comparison between VLMs and human participants.
For subfigure (a) and (b), the color of each datapoint reflects the agreement between the two groups.
Specifically, lighter colors indicate greater similarity in performance (and being closer to the diagonal),
and vice versa. For subfigure (c) and (d), the distributions are visualized using kernel density estimation
(KDE) curves.
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A.7 VLM Response Distribution

Note that in the creation of prompts, we counterbalanced the correct answer by randomly shuffling
the options in the multiple-choice questions. If VLM are randomly guessing, one way they can do it
is by always outputting A (or any of the choices) blindly. The distribution of their response indicates
that it is not the case, as shown in Fig. 16, although there is a slight tendency towards outputting A
(likely due to the wording of guessing in Analysis A, as described in Appendix A.2).
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Figure 16: The distribution of VLM responses in terms of the options, combining trials in Analysis A
and B. The brackets in row names denote whether the gazer is Actor X or Y for the combination of
Objects.

A.8 VLM Data Point Overview

See Fig. 17. Each trial is represented as a colored cell. There are 900 columns, the same number
as the number of tesst stimuli. Since VLMs involved only in Analysis A are presented with each
stimulus once, and ones in Analysis B are presented with each stimulus ten more times, they occupy
one and eleven rows respectively. Note that besides the five VLMs mentioned in the main text,
Llama-3.2V-11B-cot was also evaluated using the Analysis B pipeline, such that each stimulus was
presented 10 times, in addition to once in Analysis A. However, since its overall performance is close
to the random-guessing baseline, we did not analyze its behavior.
Note that the main difference between the five top-tier VLMs in Analysis B and others is how they
perform on the harder cases, especially when there are more Objects. Hints of Proximity effect can
be found, while the finding of the null effect of VLMs size is also consistent with the visualization.
Results of Analysis B VLMs also indicate that their performance is relatively robust: their eleven
rows are very similar to each other (within each VLM).
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Trials, sorted by first #Objects, then Proximity, and then View
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Figure 17: X axis represents stimuli. Blue cells are trials where the response is incorrect. Rows are
sorted such that, roughly speaking, larger models are placed lower.

23



A.9 Human Data Point Overview

See Fig. 18. Again, participants were randomly assigned to one of the stimulus lists, each consisting
of 45 test stimuli (shown here) and 7 predetermined attention-check stimuli (not shown here). Only
participants who passed all attention checks are shown.
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Figure 18: Each row depicts all the data points we collect from a human participant (who passed all
attention checks), and each cell is a trial. Cells with a lighter color indicate wrong responses.
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A.10 Human Performance by Condition
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Figure 19: Each 3 by 3 matrix is a summary of a participant’s performance. The rows from top
to bottom represent Proximity=1,2,3 respectively, and the columns from left to right represent
View=front, left, right respectively. There is a general tendency of lower performance as
Proximity gets higher (i.e., objects become closer to each other), especially when the View̸=front.
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A.11 Accuracy Distribution of VLMs

Aggregated accuracy across the five VLMs against different controlled variables is shown in Fig. 20.
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Figure 20: VLM Accuracy nested within View, Proximity, and Objects. Based on responses from
the five top-tier VLMs. Dashed lines represent the random-guessing baseline. 95% CI drawn.
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A.12 Mixed-Effects Modeling Details

We fitted mixed-effects logistic models in R (Version 4.3.3) using the lme4 package (Version 1.1-35.5;
Bates et al. 2015). Figure below shows the estimated marginal means obtained by fitting a mixed-
effects model for each group, which then contributed to all curves of the same color in the figure.
Dashed lines are the random-guessing baselines. The figures on the left depict variable relations
with the accuracy in the probability space, while the figures on the right depict them in the logit
space. Note that averaging is always performed in the logit space, as this is part of the reason why the
link transformation is used in the first place. They also depict how probability space and logit space
manifest the degradation differently: degradation is amplified when the accuracy is high (the case
for humans) and reduced when accuracy is low (the case for VLMs) in logit space. No significant
difference between marginal means for View=left and right.

(a) View effect

(b) Proximity effect

(c) Choice effect
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Table 4: The estimated fixed and random effects statistics for each group. Significant effects are in
black while others are in gray (using α = 0.05). b = estimate; SE = standard error. The effect sizes are
obtained by dividing the coefficient estimate by the effect size denominator (obtained by first adding
π2/3 to the sum of variances for all random effects, then taking a square root, following Muradoglu
et al. 2023 All these significant effects cannot be explained by a random-guessing account of VLM’s
performance. Therefore, by manipulating these controlled variables, we can find behavioral features
that constrain hypotheses of the inference underlying VLMs’ emergent computation (i.e., excluding
the random-guessing account).

Term Statistic Gemini GPT GLM InternLM Qwen Humans
StimulusID Variance 16.350 9.350 25.228 30.021 19.458 2.744

ParticipantID Variance NA NA NA NA NA 0.404
PromptID Variance 0.025 NA NA NA 0.036 NA

Effect Size Denominator 4.434 3.555 5.340 5.772 4.773 2.537
Intercept b 0.544 0.843 0.526 0.237 -0.059 7.414

SE 0.307 0.218 0.375 0.432 0.347 0.527
View=left b -0.444 -0.170 -0.316 0.173 0.594 -3.236

SE 0.381 0.280 0.488 0.548 0.429 0.422
p 0.244 0.544 0.517 0.752 0.166 <0.001

Cohen’s d -0.100 -0.048 -0.059 0.030 0.124 -1.275
View=Right b -0.252 -0.126 -0.293 0.245 0.443 -3.218

SE 0.382 0.278 0.489 0.548 0.422 0.424
p 0.509 0.650 0.550 0.655 0.293 <0.001

Cohen’s d -0.057 -0.036 -0.055 0.042 0.093 -1.268
Proximity (centered) b -0.722 -0.464 -0.726 -0.657 -0.304 -1.305

SE 0.193 0.140 0.249 0.278 0.211 0.168
p <0.001 0.001 0.004 0.018 0.150 <0.001

Cohen’s d -0.163 -0.130 -0.136 -0.114 -0.064 -0.514
#Object (centered) b -0.906 -0.587 -1.459 -1.644 -1.145 -0.670

SE 0.208 0.153 0.294 0.331 0.233 0.152
p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Cohen’s d -0.204 -0.165 -0.273 -0.285 -0.240 -0.264
Gazer=Y b -0.166 -0.938 -1.348 -1.144 -0.744 -1.003

SE 0.315 0.233 0.418 0.466 0.349 0.238
p 0.598 <0.001 0.001 0.014 0.033 <0.001

Cohen’s d -0.037 -0.264 -0.252 -0.198 -0.156 -0.395
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